Fiber Nuller:

detecting faint companions close to bright stars

Charles Hanot, Gene Serabyn, Stefan Martin, Dimitri Mawet, Bertrand Mennesson, Kurt Liewer, Frank Loya

Fiber Nuller:

Fiber Nuller:

detecting fair

ions close to

Charles Hanot, Gene Serabyn, Stefan Martin, Dimitri Mawet, Bertrand Mennesson, Kurt Liewer, Frank Loya

- I.Introduction
- 2. Fiber Nuller objectives
- 3.Layout of the instrument
- 4. Results in the lab
 - 4.1. Visible nuller
 - 4.2.H-band nuller
 - 4.3.K-band nuller
- 5.Results on the sky
- 6. Future developments
- 7. Conclusion

I.Introduction

- Direct imaging of high contrast objects:
 - Huge contrast ratio:
 - Earth-like exoplanet:2x10⁷ (10µm) & 10¹⁰ (visible)
 - →Brown dwarfs: $10^2 10^3$
 - \rightarrow Disks: $10^2 10^3$
 - •Small inner working angle
 - High angular resolution
 - High dynamic range
 - Wavefront quality

1.Introduction

2 complimentary solutions

Coronagraph:

- Wavelength: Visible
- I telescope of 4-8m
- •Extinction ratio: 10^{-9} - 10^{-10}

Nulling interferometer:

- Wavelength: Thermal IR
- •4 telescopes of 2-4m
- •Extinction ratio: 10^{-5} - 10^{-6}

I.Introduction

2 complimentary solutions

Coronagraph:

- Wavelength: Visible
- I telescope of 4-8m
- •Extinction ratio: 10^{-9} - 10^{-10}

Nulling interferometer:

- Wavelength: Thermal IR
- •4 telescopes of 2-4m
- •Extinction ratio: 10^{-5} - 10^{-6}

Fiber Nuller coronagraph:

- Wavelength: K-band
- I single 5m telescope, 2x1.5m sub-apertures
- •Extinction ratio: 10^{-2} - 10^{-3}

- •Demonstrator for TPF-I/Darwin :
 - First ground-based rotating nuller
- •Coronagraphy:
 - → Very low inner working angle
- •Science:
 - Detection of faint off-axis companions

- Demonstrator for TPF-I/Darwin :
 - First ground-based rotating nuller

- Demonstrator for TPF-I/Darwin :
 - First ground-based rotating nuller

- •Demonstrator for TPF-I/Darwin:
 - First ground-based rotating nuller

- •Demonstrator for TPF-I/Darwin:
 - First ground-based rotating nuller

- •Demonstrator for TPF-I/Darwin:
 - First ground-based rotating nuller

First experiment to demonstrate this technique

- •Demonstrator for TPF-I/Darwin:
 - Off-axis/multi-axial recombination

- •"Coronagraphy":
 - → Very low inner working angle

- •Spatial resolution: $\lambda/2B = 65$ mas (k-band, B=3.5m)
- Half transmission: $\lambda/4B = 32.5$ mas

- •Science:
 - Detection of faint off-axis companions

- •Potential targets :
 - Contrast 100:1 to 1000:1(now)
 - Near future, contrast 10⁴ (maybe better)
 - →Angular separation < 150 mas

- •Science:
 - → Observation of circumstellar disks

Potential targets:

→Survey of hot material around mK<5 stars with known IR excess

$$Null = \frac{I_{ab}}{I_a + I_b + 2\sqrt{I_a I_b}}$$

4.1. Visible nuller results

- •Wavelength: monochromatic, 632.8 nm
- •Best achieved null: 1.3×10-6 (770,000:1)

P. Haguenauer & E. Serabyn, Applied optics, April 2006

4.2. H-band nuller results

- •Wavelength: H-band, I.475-I.825 µm (20%)
- •Best achieved null with APS: 7x10⁻⁵ (14,000:1)

S. Martin et al., Proc. SPIE, 2008

- •Best Null: 2x10⁻³ (500:1)
- •Chromaticity limit: ~ $2x10^{-3}$ (500:1) \rightarrow OK for sky
- •Amplitude mismatch: $5\% \Rightarrow \sim 2 \times 10^{-4}$ (2000:1)

Result obtained in the nulling lab, May 2008

- •Best Null: 2x10⁻³ (500:1)
- •Chromaticity limit: ~ $2x10^{-3}$ (500:1) \rightarrow OK for sky
- •Amplitude mismatch: $5\% \Rightarrow \sim 2 \times 10^{-4}$ (2000:1)

Result obtained in the nulling lab, May 2008

- •Best Null: 2x10⁻³ (500:1)
- •Chromaticity limit: ~ $2x10^{-3}$ (500:1) \rightarrow OK for sky
- •Amplitude mismatch: $5\% \Rightarrow \sim 2 \times 10^{-4}$ (2000:1)

Result obtained in the nulling lab, May 2008

- •Requirements on the pupil rotator:
 - •Shear misalignment < 100 µm
 - •Pointing misalignment < 100µrad

- •Requirements on the pupil rotator:
 - •Shear misalignment < 100 µm
 - •Pointing misalignment < 100µrad

- •Requirements on the pupil rotator:
 - •Shear misalignment < 100 µm
 - •Pointing misalignment < 100µrad

Stability of the null when rotating
 Null depth vary between 2.7x10⁻³ - 4x10⁻³

Result obtained in the nulling lab, September 2008

- •What about the stability between 2 ≠rotations?
 - →Stability between measurements > 2.3×10⁻⁴
 - Stability measured over a couple of hours

Result obtained in the nulling lab, September 2008

- Detection of a faint companion
- Companion characteristics:
 - •Wedge angle ≈ 15"
 - •Similar to 40 mas on the sky
 - Wedge made of CaF2
 - $\Delta I = [(n_1-n_2)^2/(n_1+n_2)^2]^2 = 8 \times 10^{-4}$

- Detection of a faint companion
- Companion characteristics:
 - •Wedge angle ≈ 15"
 - •Similar to 40 mas on the sky
 - Wedge made of CaF2
 - $\Delta I = [(n_1-n_2)^2/(n_1+n_2)^2]^2 = 8 \times 10^{-4}$

- •Significant oscillations detected (6-8σ)
- •Separation between the 2 peaks = 90°
- •Max of oscillations consistant with ΔI_{comp}

Result obtained in the nulling lab, September 2008

Results obtained in the Nulling lab with CaF2 wedged plate, July 2008

$$\Phi(R,\theta) = \frac{\sum S(t) * T(R,\theta,t)}{\sqrt{\sum T(R,\theta,t) * T(R,\theta,t)}}$$

	Theory	Sine fitting	MCM
Pos1-Pos2	-40	-32.2	-33.7
Pos2-Pos3	-40	-46.3	-43
Pos I-Pos 3	-80	-78.5	-76.7

- •Fiber Nuller run (July 2008)
- Objective #1: Measuring stellar diameters
- •Objective #2: Observing a low contrast binary system

•First Fringe on Gamma Draconis

Comparison with fringes of long baseline

interferometers

- Measuring stellar diameter with a nuller
 - •Leakage = $\pi\theta^2B^2/\lambda^2$

- •Gamma Draconis
- •Diameter = 10.9 mas
- •Null depth: 4.7x10-3

- Alpha Herculis
- •Diameter = 32 mas
- •Null depth: 3.86x10⁻²

Measuring a null limited by the observed object

White noise around the null

•Measuring a null limited by the observed object √ Gamma Draconis, 10.9 mas, Null = 4.7x10⁻²

•Measuring a null limited by the observed object √ Gamma Draconis, 10.9 mas, Null = 4.7x10⁻²

•Measuring a null limited by the observed object √ Gamma Draconis, 10.9 mas, Null = 4.7x10⁻²

Null sequence generated by FNSim

•Measuring a null limited by the observed object $\sqrt{\text{Gamma Draconis}}$, 10.9 mas, $\text{Null} = 4.7 \times 10^{-2}$

Null sequence generated by FNSim

- Number of points per null depth interval
- •2 Max: I is the null, the other is the contructive fringe

Data obtained with FNSim

- Number of points per null depth interval
- •2 Max: I is the null, the other is the contructive fringe

Data obtained with FNSim

- Number of points per null depth interval
- •2 Max: I is the null, the other is the contructive fringe

Data obtained with FNSim

- Number of points per null depth interval
- •Null = mid-max point
- •Measured null = $4.6 \times 10^{-3} \pm 0.5 \times 10^{-3}$

Data obtained with FNSim

- Number of points per null depth interval
- •Null = mid-max point
- •Measured null = $4.6 \times 10^{-3} \pm 0.5 \times 10^{-3}$

Data obtained with FNSim

- Number of points per null depth interval
- •Null = mid-max point
- •Measured null = $4.6 \times 10^{-3} \pm 0.5 \times 10^{-3}$

Data obtained with FNSim

- Scientific results
- •6 Observed star

•Impact of the Fringe Trackers on the null

Results obtained at Palomar on Gamma Draconis, July 2008

Fringe tracker OFF

Results obtained at Palomar on Gamma Draconis, July 2008

- •Fringe tracker cut off frequency: 50-100Hz
- •Gain: SNR improved by at least 10
- •Improvement:

 Cut off at 200Hz

 SNRx10

Fringe tracker OFF

Results obtained at Palomar on Gamma Draconis, July 2008

- •Fringe tracker cut off frequency: 50-100Hz
- •Gain: SNR improved by at least 10
- Improvement:

 ✓ cut off at 200Hz

 SNRx10

Fringe tracker OFF

Results obtained at Palomar on Gamma Draconis, July 2008

- •Fringe tracker cut off frequency: 50-100Hz
- •Gain: SNR improved by at least 10
- Improvement:

 ✓ cut off at 200Hz

 SNRx10

Fringe tracker OFF

Results obtained at Palomar on Gamma Draconis, July 2008

- Fringe tracker cut off frequency: 50-100Hz
- •Gain: SNR improved by at least 10
- •Improvement:

 Cut off at 200Hz → SNRx10

Fringe tracker OFF

Results obtained at Palomar on Gamma Draconis, July 2008

- •Fringe tracker cut off frequency: 50-100Hz
- •Gain: SNR improved by at least 10
- •Improvement:

 Cut off at 200Hz → SNRx10

Fringe tracker OFF

Results obtained at Palomar on Gamma Draconis, July 2008

- Fringe tracker cut off frequency: 50-100Hz
- •Gain: SNR improved by at least 10
- Improvement:

 ✓ cut off at 200Hz

 SNRx10

6.Future developments

- Improvement of the sensitivity
 - Beam compressor
 - Better detectors
 - Bigger telescope

6. Future developments

- •Improvement of the achromaticity
 - •We are limited by the chromaticity to 2x10-3
 - Achromatic phase shifters (half-wave plates)
 - •Possible to go down to 1x10⁻⁴ in H and K

7.Conclusion

- •Multi-axial beam recombination concept is proven
- •First successful run at Palomar
- Pupil rotator functionnal
- Ix 10⁻³ companion detected using pupil rotation
- "Image" successfully reconstructed
- Data analysis strategy under progress
- Ready to observe binaries
- •What about a Fiber Nuller on a 8-10 m telescope?
- •4 beams fiber nuller just like TPF-I